Notes

Topic 08: Exponents and Scientific Notation

$2^4 \rightarrow 2 * 2 * 2 * 2 = 16$

2 ⁴ *	2 ³	\rightarrow	2^7 When multiplying numbers with exponents, keep the same base and <i>add</i> the exponents.
	$\frac{2^{7}}{2^{3}}$	\rightarrow	2 ⁴ When dividing numbers with exponents, keep the same base and <i>subtract</i> the exponents.
	2-4	\rightarrow	$\frac{1}{2^4}$ This is key. Negative exponents are not negative numbers. They simply signal a flip to the <i>denominator</i> .
	2 ¹	\rightarrow	Any number to the power of "1" is that same number.
	2 ⁰	\rightarrow	1 Any number to the power of "o" is "1".

Notes

$230,000 \rightarrow 2.3 * 10^5$

A number in scientific notation with a *positive* exponent is a really big number.

Don't just count the number of zeros! You have to count the number of decimal places.

$0.00789 \rightarrow 7.89 * 10^{-3}$

A number in scientific notation with a *negative* exponent is a really small number. It is not a negative number, just less than "1".

Again, don't just count the number of zeros! You have to count the number of decimal places.

$8 * 10^5 + 6 * 10^4 \rightarrow 8.6 * 10^5$

In doing operations with numbers in scientific notation, a useful strategy is to first convert the number to its normal form.

If you do that here, you can easily see that 800,000 plus 60,000 is 860,000.