Topic 08: Exponents and Scientific Notation

$$
2^{4} \rightarrow 2 * 2 * 2 * 2=16
$$

$$
2^{4} * 2^{3} \rightarrow 2^{7} \begin{aligned}
& \begin{array}{l}
\text { When multiplying numbers with } \\
\text { exponents, keep the same base and } \\
\text { add the exponents. }
\end{array}
\end{aligned}
$$

$$
\frac{2^{7}}{2^{3}} \rightarrow 2^{4} \quad \begin{aligned}
& \text { When dividing numbers with } \\
& \text { exponents, keep the same base and } \\
& \text { subtract the exponents. }
\end{aligned}
$$

$$
2^{-4} \rightarrow \frac{1}{2^{4}} \quad \begin{aligned}
& \begin{array}{l}
\text { This is key. Negative exponents are } \\
\text { not negative numbers. They simply } \\
\text { signal a flip to the denominator. }
\end{array} \\
& \hline
\end{aligned}
$$

$$
2 \rightarrow 2 \quad \begin{aligned}
& \text { Any number to the power of " } 1 \text { " is } \\
& \text { that same number. }
\end{aligned}
$$ that same number.

$$
20 \rightarrow 1 \quad \begin{aligned}
& \text { Any number to the power of "o" is } \\
& \text { "1". }
\end{aligned}
$$

Notes

$230,000 \rightarrow 2.3 * 10^{5}$

A number in scientific notation with a positive exponent is a really big number.

Don't just count the number of zeros! You have to count the number of decimal places.
$0.00789 \rightarrow 7.89 * 10^{-3}$
A number in scientific notation with a negative exponent is a really small number. It is not a negative number, just less than " 1 ".

Again, don't just count the number of zeros! You have to count the number of decimal places.

$$
8 * 10^{5}+6 * 10^{4} \rightarrow 8.6 * 10^{5}
$$

In doing operations with numbers in scientific notation, a useful strategy is to first convert the number to its normal form.

If you do that here, you can easily see that 800,000 plus 60,000 is 860,000 .

