Topic No. 09

 \#1

Question 1

Figure 1 can be transformed to create Figure 2 using a single transformation.

Which transformation can be used to accomplish this?
A dilation
B rotation
C reflection
D translation

Topic No. 09

 \#1

Question 2

Which sequence of transformation takes $\Delta \mathrm{A}$ to its image, $\Delta \mathrm{B}$?

A reflection over the x-axis and translation 2 units down
B reflection over the y-axis and translation 2 units down
C translation 2 units down and 90° rotation about the origin
D translation 12 units right and 90° rotation about the origin

Question 3

A sequence of transformations was applied to an equilateral triangle in a coordinate plane. The transformations used were rotations, reflections, and translations. Which statement about the resulting figure is true?

A It must be an equilateral triangle with the same side lengths as the original triangle.

B It must be an equilateral triangle, but the side lengths may differ from the original triangle.

C It may be a scalene triangle, and all the side lengths may differ from the original triangle.

D It may be an obtuse triangle with at least one side the same length as the original triangle.

Question 4

Figure Q was the result of a sequence of transformations on figure P , both shown below.

Which sequence of transformations could take figure P to figure Q ?
A reflection over the x-axis and translation 7 units right
B reflection over the y-axis and translation 3 units down
C translation 1 unit right and 180° rotation about the origin
D translation 4 units right and 180° rotation about the origin

Question 5

Figure X and figure Y are shown on the coordinate grid below.

Which statement about figures X and Y must be true?
A. A series of translations will transform figure X to figure Y , and the figures will be congruent.
B. A 180° clockwise rotation will transform figure X to figure Y , and the figures will be congruent.
C. A series of translations will transform figure X to figure Y , but the figures will not be congruent.
D. A 180° clockwise rotation will transform figure X to figure Y , but the figures will not be congruent.

Question 6

Figure L and figure M are shown on the grid below.

Maria wants to transform figure L to figure M using only rotations, reflections, and translations. Which statement is true?
A. The transformation can be done with a reflection followed by a rotation.
B. The transformation can be done with a reflection followed by a translation.
C. The transformation cannot be done because figure L is not congruent to figure M .
D. The transformation cannot be done because figures L and M are in different quadrants.

Topic No. 09

 \#1

Question 7

If $\triangle \mathrm{ABC}$ is rotated 90 clockwise about the origin, what will be the new coordinates of vertex B?

A $(-1,-4)$
B $(1,4)$
C $(4,1)$
D $(4,-1)$

Question 8

The circle shown below is centered at $(0,0)$ and passes through point P located at (2, o).

The circle is dilated with the center of dilation at the origin and a scale factor of 0.5 and then translated up 3 units. What are the coordinates of the image of point \mathbf{P} after this transformation?

A $(4,3)$

B $(1,3)$

C $(1,1.5)$

D $(0.5,3)$

Topic No. 09

 \#1

Question 9

When $\triangle \mathrm{ABC}$ was dilated by a scale factor of 2 , centered at the origin, the result was its image $\Delta A^{\prime} B^{\prime} C^{\prime}$ shown on the coordinate plane below. The vertices of $\Delta A^{\prime} B^{\prime} C^{\prime}$ are $A^{\prime}(-4,4), B^{\prime}(-4,6)$, and $C^{\prime}(2,4)$.

What are the coordinates of the vertices of $\triangle \mathrm{ABC}$?

Vertices A (\qquad , \qquad) B \qquad ,
) C \qquad , ___

Question 10

Triangle $A B C$ was rotated 90° clockwise. Then it underwent a dilation centered at the origin with a scale factor of 4 . Triangle $A^{\prime} B^{\prime} C^{\prime}$ is the resulting image.

What parts of $\Delta A^{\prime} B^{\prime} C^{\prime}$ are congruent to the corresponding parts of the original triangle? Explain your reasoning.

Compare the perimeters of $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$. Explain your reasoning.

